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Abstract. Air pollution has been linked to several health problems including heart disease,
stroke and lung cancer. Modelling and analyzing this dependency requires reliable and accurate
air pollutant measurements collected by stationary air monitoring stations. However, usually
only a low number of such stations are present within a single city. To retrieve pollution
concentrations for unmeasured locations, researchers rely on land use regression (LUR) models.
Those models are typically developed for one pollutant only. However, as results in different
areas have shown, modelling several related output variables through multi-task learning can
improve the prediction results of the models significantly. In this work, we compared
prediction results from singletask and multi-task learning multilayer perceptron models on
measurements taken from the OpenSense dataset and the London Atmospheric Emissions
Inventory dataset. LUR features were generated from OpenStreetMap using OpenLUR and
used to train hard parameter sharing multilayer perceptron models. The results show multi-task
learning with sufficient data significantly improves the performance of a LUR model.

1. Introduction
Evidence suggests that air pollution has adverse effects on health [1, 2, 3] and the environment [4]. In
order to research, assess and prevent these effects, availability of high quality measurements of air
pollutants is necessary. Official authorities maintain stationary air quality monitoring networks, mostly
equipped with sensors for multiple pollutants [5, 6]. However, such stations only offer data from a
limited number of locations, as usually only few stations are present within a single city and land-use
regression (LUR) models have been used successfully to account for spatial variability within cities
and for epidemiological analyses [7]. While LUR models are trained on only one pollutant, several
research areas have shown the potential of training on multiple related target variables, so called multi-
task learning [8].

Air pollution monitoring stations often measure concentrations of more than one pollutant and the
high spatial and temporal correlation of air pollutant concentrations [9] suggests that the emissions of
different pollutants depend on the same set of factors. Thus, the tasks of modelling the pollutants
should be highly related and modelling them with a multi-task learning model might improve the
accuracy of the predictions. However, this approach has not been assessed yet in the context of
modelling air pollution. To evaluate it, the performance of a multilayer perceptron LUR model is
compared between single-task and multi-task learning on two different datasets - measurements taken
from the OpenSense project collected by low-cost, portable sensors in the city of Zurich and modelled
concentrations taken from the London Atmospheric Emissions Inventory.
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The contribution of this work is twofold: We (i) propose a new approach to developing LUR
models using concentration data from multiple pollutants, which takes advantage of the available
measurements as shown in figure 1 and (ii) demonstrate the potential of the multi-task learning
approach compared to traditional single-task models for LUR.

The work is structured as follows: In Section 2 we summarize the related work. Section 3 describes
the air pollution datasets and LUR features used to develop the models. The selected multi-task
learning framework is described in Section 4 and the experimental approach and the models in Section
5. In Section 6 we present our results and in Section 7 we discuss the advantages and limitations of the
multi-task learning approach. Section 8 provides a conclusion and outlook for future work.

Figure 1. Air monitoring stations collect data from different pollutants. In our approach we use multi-
task learning to improve the accuracy of pollution maps.

2. Related work

2.1. Land-Use regression
LUR models are an active field of research as the public awareness of the health and environmental
effect of air pollution grows. Such models have been developed for numerous large cities worldwide.
A 2008 review collected models developed for several cities in Europe as well as the USA [10] and a
recent review from 2017 includes LUR models for 16 different cities worldwide [11]. Within the
European ESCAPEProject aimed at assessing the long-term effects of air pollution on human health,
models have been developed for 36 cities in Europe using a standardized approach of model selection
for a linear regression [1].

Traditionally, linear regression has been used for LUR [10, 11], however, several other machine
learning models have been proposed to increase the accuracy of the predictions and model non-linear
relationships between the variables. Generalized additive models are one such example and they have
been used to improve prediction scores in LUR models of nitrogen oxides (NOx) in Southern
California [12] and PM2.5 models in Beijing-Tianjin-Hebei (BTH) region in China [13]. Brokamp et al.
used random forest regression to improve concentration predictions of in the urban city of Cincinnati,
Ohio [14], and in [15] this approach is used to model NO2 concentration in a metropolitan area of
Japan.

Models using neural networks for LUR have also been proposed. For example, Alam and
McNabola compare linear LUR models with multilayer perceptron models, achieving better results
with the latter [16], while Adams and Kanaroglou use multilayer perceptron LUR models to construct
real-time air pollution health risk maps [17].

Steininger et al. use a deep learning neural network to model air pollutant concentrations directly
from globally available map images [18] and Lautenschlager et al. use features generated from
geographical information available in the OpenStreetMap database [19] to develop models performing
better than similar models using features from local or closed sources [20].

In all of these studies, only one pollutant is predicted with a single model. It has been shown that
different air pollutants show high temporal and spatial correlation patterns [21] and thus, the tasks of
modelling different air pollutants can be highly related. The goal of this work is to explore the
possibility of achieving better prediction results using a multi-task learning framework.

2.2. Multi-task learning
Multi-task learning is a machine learning paradigm in which several related tasks are modelled
simultaneously. A shared representation is used to guide the models to the most relevant features, thus
potentially improving generalization and performance [8, 22]. It has been shown to increase
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effectiveness of machine learning models in a wide range of fields.
Collobert and Weston proposed a multi-task learning approach for natural language processing, in

which several speech related predictions are made using a single neural network [23]. Gibert et al. use
a multi-task learning framework to automatically detect anomalies for railway track inspections using
machine vision. The multi-task model performs with increased accuracy as compared to single-task
detectors [24].

Ramsundar et al. use a multi-task framework to develop large-scale models in the field of drug
discovery. The results show increasing prediction accuracy when additional tasks are added to the
model and the shared representation learned by the models can be transferred to other tasks, which
were not used during training [25].

Caruana [8] explored the direct comparison of single-task models and multi-task models, the latter
achieving better results on problems including autonomous driving simulations, recognizing knobs on
images of doors and predicting the severity of pneumonia.

Multi-task learning has been applied in several fields where multiple related tasks are modelled,
performing better than using single-task models separately. However, its application in the context of
air pollution modelling has not been assessed. This work is aimed at filling this gap, by comparing
single-task LUR models with models used to predict several air pollutants at the same time.

We used a multilayer perceptron hard parameter sharing model for multi-task learning, as it is the
most commonly used approach in other applications and because it allows for a direct comparison
within a single framework.

3. Materials
In this section, the data sources used for the evaluation of the multi-task learning approach are
introduced: the OpenSense dataset collected during a mobile sensing campaign in Zurich [26] and the
London Atmospheric Emission Inventory [27], which contains a dataset developed using an
atmospheric dispersion model and is published by London authorities. Furthermore, the LUR features
which have been used to develop single-task and multi-task learning models are discussed in this
section.

3.1. OpenSense dataset
The OpenSense Project collected pollution data over the period of several years between 2012 and
2016 from mobile, low-cost sensing units equipped with an ultrafine particle (UFP) sensor,
carbonmonoxide (CO) sensor and ozone (O3) sensor placed on top of ten street cars, travelling on
regular routes within the city of Zurich. The particulate matter pollution was sampled every 5 s and the
O3 and CO concentrations every 20 s [28]. A GPS signal receiver provided spatial information about
the measurements. The gas sensors were equipped with water and dust covers to minimize possible
interference [28].

3.1.1. Data selection
For creating the LUR models, measurements from the year 2014 have been selected from the dataset.
Although there are certainly LUR models being developed for smaller time scales using additional
weather information as features ([29], [30]), the most common approach is to consider a long time
period for averaging the measurements. This removes any possible seasonal trends, which have a
considerable influence on air pollution [31, 32]. Additionally, aggregated means are important from a
regulatory perspective, as for example the European Commision enforces limits on annual averages
for emissions of air pollutants [33]. We used the concentration data collected during the year 2014,
with the exception of CO, where measurements were not available for the first two months of 2014.
Instead, to maintain a comparable representation of all seasons, CO was averaged using the period of
one year starting from 03/2014. Table 1 summarizes the data that has been selected from the
OpenSense dataset to develop the models.

Table 1. Subset of the OpenSense dataset considered.
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Pollutant Start End Samples
UFP 01/2014 12/2014 11.9 Mio
O3 01/2014 12/2014 5.3 Mio
CO 03/2014 02/2015 19.7 Mio

3.1.2. Data preprocessing
The UFP dataset has been properly calibrated and filtered and thus contains accurate measurements
[34]. Reference measurements and internal variables of the sensors are not available for the ozone and
carbonmonoxide datasets and thus a null-offset calibration cannot be done. The concentration
measurements for those two pollutants are therefore taken from the factory pre-calibrated sensors
without additional calibration. Following Hasenfratz et al., an initial GPS-filter is applied to assure an
accurate geo-tagging of the concentrations, based on the horizontal dilution of precision (HDOP) [29].
Hasenfratz et al. discarded all measurements with a HDOP of smaller than 3. To obtain an even more
accurate positioning we used the threshold of 2. Additionally, all measurements taken outside of the
boundaries of the routes taken by the street cars are also discarded. The remaining samples (97.1% of
the UFP measurements, 96.8% of the CO measurements and 96.9% of the O3 measurements) were
used for further processing.

3.1.3. Data aggregation
Following [29], where a 100 m×100 m grid was used to develop a LUR model with the OpenSense
UFP data, annual averages for the same spatial resolution of 100 m were calculated. Because the
measurements were taken by mobile sensors, there was a considerable variation in the number of
observations in each cell, ranging from 1 to over 300 000 for the 100 m grid. To ensure that the mean
annual concentrations are reliable and to exclude possible outliers due to positioning errors, cells with
less than 50 measurements were discarded.

(a) Ultrafine particles (b) Ozone (c) Carbonmonoxide

Figure 2. Distribution of the concentrations of ultrafine particles, ozone and carbon monoxide in
the year 2014 as compared to a log-normal distribution. Based on the OpenSense dataset.

3.1.4. Data evaluation
Data quality for air pollutants can be assessed using a well established observation that the
measurements of air pollutants approximately follow a log-normal distribution [35]. Figure 2 shows
the empirical distribution of the raw measurements in comparison to a theoretical log-normal
distribution with the same mean and standard deviation. The relatively close fit of both distributions
for the UFP indicates that the measurements are reliable. This does not hold true for the CO and O3

data, where there are substantial deviations from the log-normal distribution. The poor fit of the log-
normal distribution function to the concentration measurements for CO and O3 indicates poor data
quality, which can be attributed to the sensors not being adequately calibrated. A proper calibration
would require accurate reference data for a wide range of humidity and weather conditions, which is
not available for this dataset. The variability of atmospheric conditions in which the mobile sensors
have been used can thus result in the measurements not being accurate [34].

3.1.5. Summary
The previous analysis of the OpenSense dataset suggests that the measurements of CO and O3 might
be noisy and the question of whether an evaluation of multi-task learning can be done on such a
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dataset should be addressed. While a dataset containing measurements from well calibrated sensing
units would serve this purpose better, to our best knowledge there is no such a dataset that also
contains enough samples to enable training multilayer perceptron models. The measurements of UFP
from the OpenSense dataset have been used successfully to develop LUR models before [29, 19] and
for this reason, while accepting the limitations of using noisy measurements of the other pollutants, we
decided to include the OpenSense dataset in our analysis.

The OpenSense datasets that have been used here can be accessed online: [36] for the UFP dataset
and [37] for the CO and O3 datasets.

3.2. London Atmospheric Emissions Inventory
The London Atmospheric Emissions Inventory (LAEI) is a data collection containing estimates of
pollutant emissions and their sources for a given year in the city of London. The input factors include
traffic data from road and rail networks, domestic and commercial fuel consumption, aviation, and
pollution from individual industrial sites. The emission data is used to model ground-level average
yearly concentrations of air pollutants on a 20 m × 20 m grid using a atmospheric dispersion model.

In this work, we used the 2013 version of the inventory to develop LUR models for multiple
pollutants: nitrogen dioxide (NO2), nitrogen oxides (NOx), particulate matter of diameter less than 10
µm (PM10), number of days with a daily mean PM10 concentration greater than 50 µg m−3 (PM10d),
and particulate matter of diameter less than 2.5 µm (PM2.5). It is important to stress that the LAEI
contains modelled annual mean concentrations and not measurements from air monitoring stations.
However, the inventory has been used for LUR modelling, as for example Steininger et al. developed
deep learning LUR models using the concentration data for NO2 from the LAEI [18].

3.3. Features
We generated LUR features using the OpenLUR approach [19]. Starting from a given point, the total
area of commercial, industrial and residential buildings within different radiuses (50m – 3000 m in
50m steps) was computed using geographical information from OpenStreetMap. Additionally, the total
length of roads of different types and the distance to the closest traffic signal, motorway, primary road
and industrial area was calculated. In total 244 features were generated this way.

Table 2. Results of feature selection for both datasets.
(a) Features selected for the OpenSense data (b) Features selected for the LAEI data
Features selected Features selected
residential area within 1550m
distance to the closest primary road
length of large roads within (100m, 850m, 1500m)
distance to the closest industrial area
residential area within (700m, 2950m, 3000m)
industrial area within (1750m, 2550m, 3000m)
commercial area within 3000m
industrial area within

length of large roads within 50m
residential area within 2150m
distance to the closest traffic signal

3.3.1. Selection
Feature selection is a systematic method of selecting the variables upon which to build the model.
Selecting only the relevant features ensures that the model is easily interpretable and improves the
performance of the model by enhancing generalization [38]. We used a selection method based on the
best performing features on linear models, similar to [1]. Starting from an empty model the feature
improving the average R2 score the most is iteratively added to the model until an improvement
threshold of 1% is no longer reached.

Features were selected separately for the OpenSense and LAEI. In total 13 features have been
selected for the OpenSense data at and 3 features for the London Atmospheric Inventory as shown in
table 2.
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4. Method
In this work, a hard-parameter sharing multi-task learning approach is implemented using a multilayer
perceptron model with two hidden layers. Multilayer perceptron models have been applied
successfully in LUR to model single pollutants [16]. It allows for a straightforward translation into a
multi-task learning framework by providing additional outputs and thus a relatively direct comparison.
When hidden layers are shared between outputs, the network is forced to learn a shared representation
between the tasks which reduces the risk of overfitting [39, 22], possibly improving the performance
of the model.

4.1. Network structure
For a direct comparison between multi-task learning and single-task learning, the model’s overall
structure is kept constant while varying the number of shared layers. This creates three distinct models
with similar architecture but different degrees of multi-task learning: a fully multi-task learning model
when all of the hidden layers are shared between pollutants, a single-task model if all of the layers are
task-specific, as well as an intermediate model with one shared layer and one task-specific layer.

4.2. Training
All training of the multilayer perceptron models was performed using the Keras library version 2.3.1
[40]. The Adam optimizer was used for the weight updating with the default learning rate of 0.001.
The mean squared error is used as the loss function and additionally the R2 score is monitored. An
early stopping condition is used to determine the end of the training before the maximum number of
epochs set to 2000. After each epoch, the improvement of the mean squared error on the validation
data is checked and if the score did not improve during the last 20 epochs the training stops and the
best performing weights are restored. The final R2 score of the model on the validation data is
calculated and averaged over all cross-validation sets. The same cross-validation division was used for
training and scoring all models. This score is then used to select the best performing model.

5. Experiments
In order to evaluate the multi-task learning approach the data is split into several training and
evaluation sets and used to train the baseline and experimental models. This procedure and the
baseline models are described in the following.

5.1. Data selection
In total, 929 cells with annual mean concentrations were available from the OpenSense dataset and
5851915 from the LAEI. However, only 4500 cells were sampled from the large dataset for training
and evaluating the models and the features have been calculated only for those measurements. The
decision to only include a limited number of data points was made due to the high computational cost
of obtaining LUR features from OpenStreetMap and to increase the generalizability of our evaluations,
as datasets usually used for LUR only contain limited number of samples [29]. For a comprehensive
evaluation of the multi-task learning approach, training sets of different sizes were included. For the
OpenSense dataset samples of 100, 300 and 500 measurements were sampled uniformly as training
sets to investigate the influence of the size of the training data on the performance of the multi-task
learning models. The models for the London Atmospheric Emissions were trained using sample sizes
of 100, 300, 500 and 3000. The measurements not included in the training set were used to evaluate
the resulting models to obtain the final score. All model types (including the baseline models) were
trained using the same training set and evaluated using the same test set and used the same cross-
validation division for all models. In total 7 different training sets were created this way.

5.2. Baseline
In order to evaluate the multi-task learning model and put the observed differences in context, the
LUR models for the available datasets are first developed using traditional approaches - linear
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regression and random forest regression. The details on how models were trained and evaluated using
both approaches are provided here.

5.2.1. Linear model
Linear regression has been traditionally used in LUR models [41], it is therefore a good baseline to
consider for the performance of other models. For each dataset, a linear model was fitted on the
training set using the features selected with the algorithm described in Section 3.3.1. Each of the
pollutants was modelled separately. The resulting models were then evaluated on the available test
samples.

5.2.2. Random forest
Random forest regression has been used for LUR models yielding good prediction results [14], which
is the reason why it was included as a baseline. For each dataset, a random hyperparameter search was
performed to find the optimal number of trees (10 – 2000), fraction of features considered (0.0 – 1.0),
fraction of data considered (0.0 – 1.0) and minimum samples for a split (2 - 21). The remaining
hyperparameters for the model use the default values provided by the scikit-learn library in version
0.22.1. The mean R2 score from a ten-fold cross-validation was used to select the best performing
model, which was then fitted on the whole training set and evaluated using the test set.

5.3. Hyperparameters for multi-task models
To evaluate the multi-task learning models, a hyperparameter optimization procedure was
implemented for each of the training sets to find the best performing models of each structure. All
models have two hidden layers, each of which contains the same number of neurons. They differ only
in the number of layers shared between the different pollutants.

Hyperparameter optimization was performed using random search for the number of neurons per
layer (5 - 200), dropout rate (0 - 0.8) and L2-regularization (0.0001 - 1). For other hyperparameters, the
default values provided by the Keras library version 2.3.1 were used during the training [40]. All three
models with different degrees of multi-task learning were trained using this set of hyperparameters and
evaluated using a ten-fold cross-validation method, similarily to the training of the random forest
regression models. The subsample of the training set left-out by the given crossvalidation iteration is
used as validation data for monitoring the performance of the model during training and for
calculating the final score.

6. Results
In this chapter we present the results of the different LUR models. This includes the results of the
baseline models and the comparison of different multi-task learning models and single-task learning
models. The models were trained using the best found hyperparameters and evaluated using the test
dataset which was not used before. The same tenfold cross-validation division of the training set used
during hyperparameter search was applied to keep track of the R2 score during training for the purpose
of early stopping. Each cross-validation was performed 30 times in total. This was a compromise
between the high computational cost of fitting the models and the requirements for an accurate
estimate of the scores.

6.1. OpenSense dataset

6.1.1. Multi-task learning
Table 3 shows the average R2 scores of models using different degrees of multi-task learning and
single-task learning on the OpenSense dataset. Zero shared layers correspond to single-task learning,
while with two or one shared layers features and activations of hidden layers are shared between
pollutants thus corresponding to multi-task learning.

The bold scores in table 3 indicate the best model for each training sample. The results show an
improvement of the R2 scores by using at least some shared representation as compared to single-task
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learning for all training samples considered.
Table 3.Average R2 scores on the test samples from the OpenSense dataset using multilayer

perceptron models with different numbers of shared layers. The increase is calculated between the
single-task learning model (zero shared layers) and the best performing multi-task learning model (at

least one shared layer).
Shared layers

Samples 0 1 2 Increase
100 0.224 0.169 0.224 +0.41%
300 0.410 0.448 0.391 +9.23%
500 0.463 0.474 0.379 +2.26%

The optimal structure of the model varies with the training sample considered as does the amount
of improvement as shown in the increase percentage of the R2 scores in table 3. The one-way ANOVA
performed for each training set shows that the modelling approaches differ significantly (p < .001).
Table 4.Average R2 scores on the test samples from the OpenSense dataset using linear regression

(LR), random forest regression (RF), as well as single-task learning (ST) and multi-task learning (MT)
using a multilayer perceptron (MLP).

MLP
Samples LR RF ST MT
100 0.131 0.262 0.224 0.224
300 0.250 0.475 0.410 0.448
500 0.264 0.566 0.463 0.474

6.1.2. Comparison
The comparison of the results of both baseline models, single-task learning models and the best multi-
task learning models for the OpenSense dataset is shown in table 4. The best performing model with at
least one shared layer has been taken to represent the multi-task learning approach. To check whether
the resulting R2 scores were significantly different, for each training sample the models were tested
pairwise using the Mann-Whitney U-test. The resulting p-values are shown in figure 3.

(a) 100 training samples (b) 300 training samples (c) 500 training samples

Figure 3. Pairwise Mann-Whitney U-tests between linear regression models (LR), random forest
models (RF) and multilayer perceptron models using single-task (ST) and multi-task learning (MT) on

the Opensense dataset.
For 300 and 500 training samples, the random forest model performs significantly better than any

other model. The linear models perform significantly worse than non-linear models. For all considered
samples, the multi-task learning model performs better than a similar multilayer perceptron single-task
model. The difference is significant for the training samples of size 300 and 500. For the training
sample of size 100, the difference is not statistically significant.

6.2. LAEI dataset

6.2.1. Multi-task learning
Table 5 shows the average R2 scores of LUR models using different degrees of multi-task learning and
single-task learning on the LAEI dataset. The best performing model for each training sample is in
bold type.
Table 5.Average R2 scores on the test samples from the LAEI dataset using multilayer perceptron
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models with different numbers of shared layers.
Shared layers

Samples 0 1 2 Increase
100 0.489 0.490 0.476 +0.32%
300 0.506 0.468 0.490 −3.09%
500 0.514 0.515 0.507 +0.18%
3000 0.522 0.528 0.534 +2.25%

The results show an increase of the R2 scores when using multi-task learning for models trained
with 100, 500 and 3000 samples, while for 300 samples the single-task model performs better.

Similarly to the OpenSense dataset, the results show that there is no one-fits-all optimal structure of
the model, with the optimal amount of shared layers varying with the training sample considered. A
clear increase of the R2 score with increasing degree of multi-task learning can however be seen when
using a large training set of 3000 samples. The one-way ANOVA performed for each training set
individually shows, that the modelling approaches differ significantly (p < .001).

6.2.2. Comparison
The comparison between the different models for the LAEI dataset can be seen in table 6.
Table 6. Average R2 scores on the test samples from the LAEI dataset using linear regression (LR),

random forest regression (RF), as well as single-task learning (ST) and multi-task learning (MT) using
a multilayer perceptron (MLP).

MLP
Samples LR RF ST MT
100 0.459 0.477 0.489 0.490
300 0.488 0.527 0.506 0.490
500 0.499 0.537 0.514 0.515
3000 0.505 0.572 0.522 0.534

Similarly to the OpenSense dataset, the models have been compared using pairwise Mann-Whitney
U-tests. The results are shown in figure 4.

The comparison shows that the random forest model performs significantly better than other
models and linear regression offers the statistically significant worse fit.

When comparing single-task and multi-task learning multilayer perceptron models, the results
show an increased fit of the models using a multi-task learning approach compared to single-task
models when trained using 100, 500 and 3000 samples. However, the difference is only statistically
significant when trained with 3000 samples. When using 300 training samples, the multi-task learning
model performs worse than the single-task learning model.

(a) 100 training samples (b) 300 training samples (c) 500 training samples (d) 3000 training samples
Figure 4. Pairwise Mann-Whitney U-tests between linear regression models (LR), random forest

models (RF) and multilayer perceptron models using single-task (ST) and multi-task learning (MT) on
the London Atmospheric Emissions Inventory dataset.

7. Discussion
The comparison of all the single-task models, including the baselines, shows a clear advantage of the
random forest models over all other model types. This holds true for both datasets and all examined
sample sizes. It is not an unexpected result, as previous comparisons have shown that random forest
models provide high accuracies in the context of LUR [14, 42].

When comparing multi-task learning with the single-task learning approach on the multilayer
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perceptron models the results for both the OpenSense and LAEI datasets indicate a possible increase
in performance of the models when using a shared representation. However, the increase in
performance is not large enough to surpass the random forest baseline model, which still outperforms
the multi-task learning model.

In this section we discuss possible reasons for this limitation, what can be done to increase the
benefits of multi-task learning and why it can still be a promising approach.

7.1. Task relatedness
Caruana [8] argues that multi-task learning helps improve generalization when using related tasks.
Two tasks are defined to be related if they use the same variables to predict the outcome and if they
use those variables in the same way [8].

Using this definition, it is possible to explore the relatedness of the tasks by comparing the relative
feature importance between different pollutants. If two tasks (modelling two different pollutants)
depend stronger on the same set of features and less so on different features, the tasks is considered
highly related.

We used the permutation variable importance measure introduced by Fisher et al. [43] on the
baseline random forest regression models to calculate the feature importance for all of the training
samples. Figure 5 shows the feature importance calculated for the OpenSense dataset with 500 training
samples and figure 6 for the LAEI dataset with 3000 samples. For all the other training samples the
calculations show a very similar pattern of feature importance.

For the OpenSense dataset, the tasks appear to be less related, as the feature importance values vary
strongly between the pollutants (figure 5). Figure 6 shows that all pollutants, except PM2.5, depend
similarly on the features. It is therefore reasonable to assume that the tasks of modelling different
pollutants in this dataset are highly related.

The feature importance analysis does not paint a clear picture of how task relatedness translates
into performance gain from shared representation. In our experiments, models on both datasets benefit
from the multi-task approach even though the task relatedness, as measured by feature importance, is
higher for the LAEI dataset.

Figure 5. Feature importance for the OpenSense
dataset with 500 samples.

Figure 6. Feature importance for the London
Atmospheric Emissions Inventory dataset with

3000.

7.2. Feature selection
One possible explanation for this unclear relationship between task relatedness and the advantage of
multi-task learning could be the used feature selection procedure. As described in Section 3.3.1,
variables used for training the models have been selected from a large pool of 244 features generated
from OpenStreetMap. The selection procedure involved comparing the R2 scores of linear models built
using each of the features and including the best one.

We used an average over all pollutants to calculate the score for each feature. An alternative
approach, which can be explored in further research, would be to select important features for each
pollutant individually and then consider an aggregate of those features for the multi-task learning.
However, because a shared metric was used only features that could on average predict all pollutant
concentrations reasonably well were included in the pool of variables to be used for the multi-task
learning models.

This selection procedure had two important consequences: First, it introduced a bias to the feature
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importance metric as calculated in Section 7.1. All features that would offer very accurate models for
only one of the pollutants, but not for the others, are not selected. Since only those features were
selected that on average predicted concentrations for all pollutants reasonably well, the tasks are more
related when comparing their feature importance than if a different feature selection method was used.

Second, selecting features that on average predict all pollutants well is in itself a form of multi-task
learning. In fact, sparsity-enforcing regularization techniques have been used for linear models in the
context of multi-task learning [22, 44]. Arguably feature selection is also one of the core mechanisms
how multi-task learning improves prediction scores in multilayer perceptron models [8]. While the
multi-task learning models considered for modelling pollutants still benefit from a shared hidden
representation, the single-task models are not truly independent, as they all depend on features that
have been selected using a multi-task method, possibly decreasing the observed difference.

7.3. Data quality
As discussed in Section 3.1.4 measurements for two of the pollutants within the OpenSense dataset are
possibly noisy and only one pollutant offers high quality measurements. In contrast, the LAEI offers
estimated concentrations of air pollutants which are not directly measured, but instead modelled using
a atmospheric dispersion model.

As neither of the datasets offers high-quality data from physical monitoring stations of air pollutant
concentrations, the question arises of how well the findings would generalize to such a hypothetical
dataset. While a definitive answer can only be given by examining multi-task learning on such a
dataset, there are some arguments that can be made on why our approach would still work.

As can be seen on the OpenSense dataset, multi-task learning increases the fit of the model
compared to a similar single-task learning model for all pollutants, including ultrafine particles for
which high-quality measurements are available. Thus, since including noisy measurements can
improve the prediction accuracy of high-quality data when modelling in a multi-task learning context,
it is reasonable to believe that a similar effect would be observed if high-quality data was used as the
additional tasks.

The LAEI dataset, on the other hand, offers only modelled concentrations. While air dispersion
models will always offer a simplified model of the emissions and spread of air pollution, they generate
accurate general trends, especially when only long averaging periods of one year or more are
considered. Thus, a similar benefit of multi-task learning can be expected when accurately measured
data is used.

Both single- and multi-task models are trained on equal data quality. The results show that multi-
task learning models offer better prediction performance than similar multilayer perceptron single-task
models. It is, however, unclear how the difference would manifest when comparing the predictions
from models trained on accurate air pollution data from high-end monitoring stations. Especially when
the sources of error are not independent, the multi-task models might only learn the noise patterns in
the data. While the findings on the OpenSense data indicate this not to be the case, additional
experiments using poor-quality data with independent sources of error could rule out this possibility.

7.4. Sample size
It is a known observation in machine learning that small sample sizes often lead to overfitting,
especially when using complex models like neural networks as compared to traditional models (e.g.
linear regression) [45, 46]. This limitation makes applying complex models in the context of LUR
difficult, since high-quality measurements are often a limited resource as mentioned in Section 1.

Our results clearly confirm this pattern, as more training samples lead to better prediction scores for
both datasets and all considered model types. When comparing multi-task and single-task learning
models, the advantage of a shared representation approach only becomes apparent with sufficient
training data. For the LAEI dataset the largest positive effect appears for 3000 training samples, while
with less data single-task models do not differ significantly from multi-task models or perform even
better. Multi-task learning shows a significant advantage for the 300 and 500 samples subset of the
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OpenSense dataset.
Large data requirements make the application of multitask learning models for LUR difficult, as

datasets containing air pollutant concentrations usually contain limited numbers of samples.

8. Conclusions and future work
In this work, we assessed multi-task learning for LUR. As pollutants are often monitored together, the
potential dependence on the same set of factors makes modelling several pollutants simultaneously an
attractive possibility. The results do indeed show that multi-task learning models perform significantly
better than similar multilayer perceptron single-task learning models when using a large enough
training set.

However, for both datasets that have been considered -the London Atmospheric Emissions
Inventory and the OpenSense dataset, random forest regression still outperforms the multi-task
learning models for all training samples. A possible direction for future research is the application of
multitask learning using tree-based ensemble methods [47]. Nonparametric ensemble models might
overcome the large data requirements of multilayer perceptron models while still benefiting from
shared information between different pollutants.

In order to decrease the data requirements for multilayer perceptron models it might be worthwhile
to explore pretraining with weak labels. Interpolation methods may be used to produce dense maps of
pollution estimates from measurements which can be used as weak labels. These labels can be used to
train the model. Thereafter, the model can be fine-tuned using only labels from real measurements.
This training procedure might improve multi-layer perceptron model performance for LUR, where
there are often relatively few data points.

Another promising research direction is the application of multi-task learning for deep-learning
based LUR models like MapLUR [18]. This model has shown better performance than random forests
on the dataset of the London Atmospheric Emissions Inventory for single-task learning and our results
suggest that multi-task learning can further increase performance.

Future work should also explore different feature selection methods, as more liberal selection
procedures might allow for higher variability in feature dependence between different pollutants and
consequently multi-task learning might benefit even more from a shared representation. Especially
sparsity-enforcing regularization techniques used for multivariate linear regression [22, 44] might be a
promising approach to building LUR models using multi-task learning.

As high-quality air pollution datasets mostly contain only a limited number of measurement
locations, the experiments have been performed on data obtained from low-cost sensors in the case of
the OpenSense dataset and modelled air concentrations using an atmospheric dispersion model in the
case of the London Atmospheric Emissions Inventory. An important direction for future research
would be to compare multi-task learning and single-task learning on a large-scale dataset containing
high-quality measurements.

Overall, the multi-task learning method using multilayer perceptrons shows better performance
than similar single-task models, while still being outperformed by Random Forest models. However,
this work demonstrates the potential of learning shared representations for better air pollution
prediction performance, which can be explored in further research using different model types.
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